Merging Metabolism and Power: Development of a Novel Photobioelectric Device Driven by Photosynthesis and Respiration
نویسندگان
چکیده
Generation of renewable energy is one of the grand challenges facing our society. We present a new bio-electric technology driven by chemical gradients generated by photosynthesis and respiration. The system does not require pure cultures nor particular species as it works with the core metabolic principles that define phototrophs and heterotrophs. The biology is interfaced with electrochemistry with an alkaline aluminum oxide cell design. In field trials we show the system is robust and can work with an undefined natural microbial community. Power generated is light and photosynthesis dependent. It achieved a peak power output of 33 watts/m(2) electrode. The design is simple, low cost and works with the biological processes driving the system by removing waste products that can impede growth. This system is a new class of bio-electric device and may have practical implications for algal biofuel production and powering remote sensing devices.
منابع مشابه
Exergo-environmental and exergo-economic analyses and multi-criteria optimization of a novel solar-driven CCHP based on Kalina cycle
The present research proposes and optimizes the performance of a novel solar-driven combined cooling, heating, and power (CCHP) Kalina system for two seasons—winter and summer—based on exergy, exergo-economic, and exergo-environmental concepts applying a Non-dominated Sort Genetic Algorithm-II (NSGA-II) technique. Three criteria, i.e. daily exergy efficiency, total product cost rate, and to...
متن کاملExergo-environmental and exergo-economic analyses and multi-criteria optimization of a novel solar-driven CCHP based on Kalina cycle
The present research proposes and optimizes the performance of a novel solar-driven combined cooling, heating, and power (CCHP) Kalina system for two seasons—winter and summer—based on exergy, exergo-economic, and exergo-environmental concepts applying a Non-dominated Sort Genetic Algorithm-II (NSGA-II) technique. Three criteria, i.e. daily exergy efficiency, total product cost rate, and to...
متن کاملMulti-objective Optimization of a Solar Driven Combined Power and Refrigeration System Using Two Evolutionary Algorithms Based on Exergoeconomic Concept
This paper deals with a multi-objective optimization of a novel micro solar driven combined power and ejector refrigeration system (CPER). The system combines an organic Rankine cycle (ORC) with an ejector refrigeration cycle to generate electricity and cold capacity simultaneously. Major thermodynamic parameters, namely turbine inlet temperature, turbine inlet pressure, turbine back pressure, ...
متن کاملOptimization of Quantum Cellular Automata Circuits by Genetic Algorithm
Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...
متن کاملThe development and assessment of solar-driven Tri-generation system energy and optimization of criteria comparison
In this research, the thermodynamic investigation of the tri-generation system is performed by the first and second law of Thermodynamics. The trigeneration system under study consists of three subsystems including the solar subsystem, Kalina subsystem and lithium bromide-water absorption chiller subsystem. The proposed system generates power, cooling and hot water using solar energy. The syste...
متن کامل